METAL HOSE

Parflex Metal Hoses The Superior Product

Parflex metal hose assemblies are designed for applications where chemicals and temperature extremes, either from media or atmosphere, are present. Factory welded and ready to install, these Parflex metal hose assemblies are leak-free, full vacuum hose solutions.

The 9A and 9M Parflex Metal Hose products are constructed with a hydroformed corrugated stainless steel core tube. Hydroforming, which utilizes high pressure water to form the corrugations, minimizes residual stress in the metal and maintains a consistent tube wall thickness throughout the hose.

Any hose assembly is only as good as its weakest link. In the case of a metal hose assembly, the weakest link can be the welding process. The proprietary methods of seam and butt welding, as well as fitting attachment, utilized in Parflex assemblies are second to none and yield a consistent, reliable, leak-free connection.

Product Features

- Excellent chemical resistance
- Operates in high temperatures
- Sizes 1/4" I.D. up to 6" I.D. (for sizes over 2" I.D., contact Customer Service)
- Hydroformed design yields a uniform wall thickness, promoting even distribution of stress during flexing and reduces concentrated residual stress
- Full Vacuum Maintains its shape under full vacuum, other hose types collapse
- Fire safety Maintains its integrity up to 1200°F
- Zero permeation
- Leak-free fitting weld connection

9A - Standard

Features:

- Hydroforming process maintains a more consistent tube wall thickness throughout the hose and maintains a smoother finish than competitive mechanical forming methods
- The brightly annealed tube material used in hydroforming minimizes the risk of Corrosion Crevice Cracking (CCR) failure and increases chemical resistance
- High percentage of braid coverage yields better cycle life and protection against tube damage

Applications/Markets

- Abrasion and over bending as a protective cover over wires or other hoses to prevent these problems
- Chemical transfer
- Diesel engine exhaust
- Hot oil and lube lines
- Loading/unloading of light oils, gas, and chemicals

9A General Purpose Hose Metal Hose Size and Performance Specifications

Inside Diameter (in.)	Number of Braids (#)	Outside Diameter (in.)	Min. Bend Radius (in.)	Working Pressure (psi)	Burst Pressure (psi)	Weight per Foot (Ibs.)		
	0	0.41		90		0.04		
1/4	1	0.47	4.5	1800	7233	0.11		
	2	0.53		2700	9100	0.18		
	0	0.65		70		0.10		
3/8	1	0.71	5.0	1558	6230	0.20		
	2	0.77		2336	9345	0.30		
	0	0.77		70		0.11		
1/2	1	0.83	5.5	1186	4743	0.22		
	2	0.89		1779	7115	0.33		
	0	0.96		57		0.17		
5/8	1	1.02	7.0	1205	4820	0.33		
	2	1.08		1808	7230	0.49		
	0	1.16		43		0.19		
3/4	1	1.22	8.0	898	3591	0.37		
	2	1.28		1347	5387	0.55		
	0	1.47		43		0.26		
1	1	1.53	9.0	718	2872	0.50		
	2	1.59		1077	4308	0.74		
	0	1.75		43		0.29		
1-1/4	1	1.83	10.0	645	2581	0.61		
	2	1.91		968	3872	0.93		
	0	2.08		28		0.47		
1-1/2	1	2.16	11.0	531	2125	0.85		
	2	2.24		797	3188	1.23		
	0	2.61		14		0.59		
2	1	2.69	13.0	449	1797	1.11		
	2	2.77		674	2696	1.63		
2-1/2 - 6	Contact Customer Service for assistance.							

- Petrochemical
- Power Gen
- Connections for the fuel rail to the combustion cans on gas turbine fuel lines
 Pump connections
- Pulp & Paper
- Solvent and steam lines

Construction

Tube: 300 series SS, Annular profile

Reinforcement: 300 series SS braid: 0, 1 or 2 layers

Operating Parameters

Temperature Range:

-380°F to +1200°F (-228°C to +648°C) For carbon steel fittings: -70°F to +900°F (-57°C to +482°C)

Working Pressure

Vacuum (30in/Hg) to 2700 psi depending on assembly specifications

Notes

Hoses greater than 2" I.D. available - Contact the Parflex Division

STAMPED (Hose Selection Criteria) - pg 15

For ordering information, consult "How to Build Parflex Metal Hose Assembly Part Numbers" - pg 5

9M - Ultra Flexible

Applications/Markets

- Abrasion and over bending as a protective cover over wires or other hoses to prevent these problems
- Chemical transfer
- Diesel engine exhaust
- Hot oil and lube lines
- Loading/unloading of light oils, gas, and chemicals

9M Flexible Metal Hose Metal Hose Size and Performance Specification

Inside Diameter (in.)	Number of Braids (#)	Outside Diameter (in.)	Min. Bend Radius (in.)	Working Pressure (psi)	Burst Pressure (psi)	Weight per Foot (Ibs.)			
	0	0.42		90		0.07			
1/4	1	0.48	3.7	1800	7233	0.14			
	2	0.54		2700	9100	0.21			
	0	0.65		70		0.20			
3/8	1	0.71	4.0	1558	6230	0.30			
	2	0.77		2336	9345	0.40			
	0	0.77		70		0.22			
1/2	1	0.83	4.4	1186	4743	0.33			
	2	0.89		1779	7115	0.44			
	0	0.96		57		0.31			
5/8	1	1.02	5.6	1205	4820	0.47			
	2	1.08		1808	7230	0.63			
	0	1.16		43		0.33			
3/4	1	1.22	6.4	898	3591	0.51			
	2	1.28		1347	5387	0.69			
	0	1.47		43		0.45			
1	1	1.53	7.1	718	2872	0.69			
	2	1.63		1077	4308	0.93			
	0	1.75		43		0.56			
1-1/4	1	1.83	7.9	645	2581	0.88			
	2	1.91		968	3872	1.20			
	0	2.08		28		0.82			
1-1/2	1	2.16	8.7	531	2125	1.20			
	2	2.24		797	3188	1.58			
	0	2.61		14		0.95			
2	1	2.69	10.3	449	1797	1.47			
	2	2.77		674	2696	1.99			
2-1/2 - 6		Contact Customer Service for assistance.							

Features:

- · Compressed corrugations for increased flexibility
- Hydroforming process maintains a more consistent tube wall thickness throughout the hose and maintains a smoother finish than competitive mechanical forming methods
- The brightly annealed tube material used in hydroforming minimizes the risk of Corrosion Crevice Cracking (CCR) failure and increases chemical resistance
- High percentage of braid coverage yields better cycle life and protection against tube damage
 - Petrochemical
 - Power Gen
 - Connections for the fuel rail to the combustion cans on gas turbine fuel lines
 - Pump connections
 - Pulp & Paper
 - Solvent and steam lines

Construction

Tube: 300 series SS, Annular profile

Reinforcement: 300 series SS braid: 0, 1 or 2 layers

Operating Parameters

Temperature Range:

-380°F to +1200°F (-228°C to +648°C) For carbon steel fittings: -70°F to +900°F (-57°C to +482°C)

Working Pressure

Vacuum (30in/Hg) to 2700 psi depending on assembly specifications

Notes

Hoses greater than 2" I.D. available - Contact the Parflex Division

STAMPED (Hose Selection Criteria) - pg 15

For ordering information, consult "How to Build Parflex Metal Hose Assembly Part Numbers" - pg 5

9H - High Pressure

Applications/Markets

- Chemical transfer
- Diesel engine exhaust
- Hot oil and lube lines
- Loading/unloading of light oils, gas, and chemicals
- Petrochemical

· Helical construction is self-draining

protection against tube damage

Features:

- Power Gen
 - Connections for the fuel rail to the combustion cans on gas turbine fuel lines
 Pump connections

· Specially designed to maintain extreme pressure and flexibility

· High percentage of braid coverage yields better cycle life and

- Pulp & Paper
- Solvent and steam lines

9H High Pressure Metal Hose Metal Hose Size and Performance Specifications

Inside Diameter (in.)	Number of Braids (#)	Outside Diameter (in.)	Min. Bend Radius (in.)	Working Pressure (psi)	Burst Pressure (psi)	Weight per Foot (Ibs.)
1/4	1	0.52	5.0	4600	18400	0.21
1/4	2	0.62	5.0	5800	23200	0.32
E/16	1	0.62	E 1	4000	16000	0.29
5/10	2	0.74	5.1	4800	19200	0.45
2/9	1	0.70	5.5	3800	15200	0.36
3/0	2	0.82	0.0	4000	16000	0.57
1/0	1	0.82	5.7	2600	10400	0.43
1/2	2	0.94		3700	14800	0.69
E /0	1	0.97	6.1	2400	9600	0.51
5/6	2	1.09		2700	10800	0.82
2/4	1	1.19	6 5	2000	8000	0.64
3/4	2	1.31	0.5	2200	8800	1.03
-	1	1.39	7.0	1500	6000	0.78
	2	1.51	7.9	2000	8000	1.25
1 1/4	1	1.75	0.4	1100	4400	1.15
1-1/4	2	1.87	9.4	1600	6400	1.70
1 1/0	1	2.07	10.0	1000	4000	1.45
1-1/2	2	2.19	12.2	1500	6000	2.16

Construction

Tube: 316 SS, Helical Profile

- Reinforcement: 304 SS Braid
- 1 or 2 layers

Operating Parameters

Temperature Range:

-380°F to +1200°F (-228°C to +648°C) For carbon steel fittings: -70°F to +900°F (-57°C to +482°C)

Working Pressure

Vacuum (30in/Hg) to 5800 psi depending on assembly specifications

Notes

STAMPED (Hose Selection Criteria) - pg 15 For ordering information, consult "How to Build Parflex Metal Hose Assembly Part Numbers" - pg 5

How to Build Parflex Metal Hose Assembly Part Numbers

9A TU 01 06 06 06 C 30 **9**A Hose Code **TU-01* First and Second** Series # End Connection* 01 - Male Pipe Thread (with hex) - NPTF 9A – General 0 - No braid, MT-Male Pipe Toe (no hex) - NPT Purpose 321 SS Tube 02 - Female Pipe Thread - NPT 1 - 304 SS Single braid, 03 - Male JIC 37° Flare 9M - Flexible 321 SS Tube 06 - Female JIC 37° Flare Swivel 2-304 SS Double braid, 07 - Female Pipe Swivel 9H – High 321 SS Tube U7 - Female Pipe Union - NPT Pressure TU – Universal Tube Stub 3 - No braid, JC - Female Oring Face Seal (ORFS) Swivel 316 SS Tube AL - A-lok® Compression 4 - 304 SS Single braid, HV – Male VacuSeal™ 316 SS Tube P6 – CPI™ Compression 5 - 304 SS Double braid, Q1 - UltraSeal[™] Swivel 316 SS Tube VH – Female VacuSeal™ 9K - Raised Face Weld Neck 6 - 316 SS Single braid, 150lb Fixed Flange 321 SS Tube 9Y - Raised Face Weld Neck 7-316 SS Double braid, 300lb Fixed Flange 321 SS Tube 4K - Schedule 40 Type A Stub with 150lb 8-316 SS Single braid, Lap Joint Flange 316 SS Tube 1Y - Schedule 40 Type A Stub with 300lb Lap Joint Flange 9-316 SS Double braid, 8K - Raised Face 150lb Fixed Slip-on Flange 316 SS Tube 8Y - Raised Face 300lb Fixed Slip-on Flange Only 9A & 9M products are available in the complete range of product options. 9H hose is only available in codes 4 & 5 (1 or 2 304 SS braids, and 316 SS tube)

06	F	irs	t	06	Se	eco	nd	06		Hos	se	C	Fitting Material	30	Overall Length
	En	d S	ize		En	d S	ize			Siz	ze				Expressed in
[-4	=	1/4		-4	=	1/4		-4	=	1/4		Steel – No Material Designation		inches
	-6	=	3/8		-6	=	3/8		-6	=	3/8		Stainless Steel = C		
	-8	=	1/2		-8	=	1/2		-8	=	1/2				
ĺ	-10	=	5/8		-10	=	5/8		-10	=	5/8		316 Stainless Steel = K		
[-12	=	3/4		-12	=	3/4		-12	=	3/4				
ĺ	-16	=	1		-16	=	1		-16	=	1		304 SS is standard material.		
ĺ	-20	=	1-1/4		-20	=	1-1/4		-20	=	1-1/4		316 SS is available upon		
	-24	=	1-1/2		-24	=	1-1/2		-24	=	1-1/2		request.		
ĺ	-32	=	2		-32	=	2		-32	=	2				
ĺ	-40	=	2-1/2		-40	=	2-1/2		-40	=	2-1/2				

* Always Alpha Numeric TU01, not 01TU.

** Not all fitting configurations are available in full array of sizes.

Fitting Information

- Q1 UltraSeal™ Swivel
- - VH Female VacuSeal™

*06-Female JIC swivel connections are available with and without the back-up hex. End users must specify fitting preference at the time of quote.

Drawings are for illustration purposes only.

All Instrumentation connections (A-lok®, CPITM, UltraSealTM, VacuSealTM) are Genuine Parker Instrumentation products. For specific information regarding these products, consult Parker Catalog 4200-CPI.

End user must ensure that the selected fittings are chemically compatible with and are able to withstand the pressure and temperatures of the fluid media, the surrounding environment and application. Reference Safety Bulletin 4400-B.1.

Flange Information

- 9K Raised Face Weld Neck 150lb Fixed Flange
- 9Y Raised Face Weld Neck 300lb Fixed Flange

- 4K Schedule 40 Type A Stub with 150lb Lap Joint Flange
- 1Y Schedule 40 Type A Stub with 300lb Lap Joint Flange

- 8K Raised Face 150lb Fixed Slip-on Flange
- 8Y -Raised Face 300lb Fixed Slip-on Flange

Flange Identification for Parflex Metal Hose Assemblies

Class	Nominal Size	D ₁	D ₂	N
150	1/2"	3.50	2.38	4
150	3/4"	3.88	2.75	4
150	1"	4.25	3.12	4
150	1 1/4"	4.62	3.50	4
150	1 1/2"	5.00	3.88	4
150	2"	6.00	4.75	4
150	2 1/2"	7.00	5.50	4
300	1/2"	3.75	2.62	4
300	3/4"	4.62	3.25	4
300	1"	4.88	3.50	4
300	1 1/4"	5.25	3.88	4
300	1 1/2"	6.12	4.50	4
300	2"	6.50	5.00	8
300	2 1/2"	7.50	5.88	8

Drawings are for illustration purposes only. All flanges meet ANSI B16.5 specifications.

No hose assembly shall contain two fixed flanges to eliminate hose twisting. Combinations shall be either; 2 floating flange connections or 1 fixed and 1 floating connection.

Fechnical Informatior

Pressure Rating vs. Bend Radius by Hose I.D.

Notes:

- The minimum bend radius is measured from the center line of the hose.
- The minimum bend radius increases with pressure (see graphs).
- Pressure is calculated at 70°F ambient temperature.

Technical Information

Velocity in Metal Hose

When gas or liquid being conveyed in a corrugated metal hose exceeds certain limits, resonant vibration can occur. Resonance may cause very rapid failure of the assembly.

In those applications where product

in the graph below, a revision of the

velocities exceed the limits shown

assembly design might include:

- 1) Addition of an interlocked metal hose liner.
- 2) An increase in the corrugated hose I.D.
- 3) A combination of the above.

Pressure Drop

Pressure drop in a piping system is often a concern of the designer.

Compared to rigid pipe, there is always a greater pressure drop in corrugated metal hose. The following graphics are offered as aids in estimating pressure drop in corrugated hose conveying water and air. The values derived are approximate and apply only to straight line installations. Bends and fittings in the hose assembly can increase the pressure drop.

Installation	Maximum Product Velocity (Ft./Sec.)					
Configuration	Unbra	aided	Braided			
	Dry Gas	Liquid	Dry Gas	Liquid		
Straight Run	100	50	150	75		
45° Bend	75	40	115	60		
90° Bend	50	25	75	40		
180° Bend	25	12	38	19		

Working Pressure Derating Factor for Elevated Temperatures							
Temperature	Working Pressure Derating Factor						
°F	304	316	321	Carbon Steel			
70	1.00	1.00	1.00	1.00			
100	1.00	1.00	1.00	1.00			
200	1.00	1.00	1.00	1.00			
300	1.00	1.00	1.00	1.00			
400	0.93	0.93	1.00	1.00			
500	0.86	0.86	0.96	0.95			
600	0.81	0.81	0.91	0.87			
650	0.79	0.79	0.89	0.85			
700	0.77	0.77	0.87	0.83			
750	0.75	0.75	0.86	0.65			
800	0.74	0.74	0.84	0.54			
850	0.72	0.72	0.84	0.44			
900	0.71	0.71	0.83	0.33			
950	0.69	0.69	0.81				
1000	0.67	0.67	0.81				
1050	0.65	0.65	0.70				
1100	0.62	0.61	0.55				
1150	0.53	0.52	0.41				
1200	0.38	0.38	0.32				

To calculate a working pressure derated for elevated temperature: Multiply the hose working pressure shown in the catalog by the appropriate derating factor from above.

Note: The working pressure of an assembly at elevated temperatures may be affected by fitting type, material and method of attachment.

Technical Informatior

Testing, Cleaning & Packaging

Testing, Cleaning and Packaging of Parflex Metal Hose Assemblies							
Code	Testing ²	Cleaning	Packaging	Fittings/Welds			
P1	General requirement (low pressure air under water)	General requirement	Bulk packed in cardboard box	As welded			
P2	Customer specified	General requirement	Customer specified	Welds buffed ¹ fittings polished (32 Ra)			
P3	General requirement (low pressure air under water)	General requirement	Bulk packed in cardboard box	Welds buffed ¹ fittings polished (32 Ra)			
P4	General requirement (low pressure air under water)	Water flushed, hot air dried	Plastic mesh protectors - assemblies sealed in plastic bag	Welds buffed ¹ fittings polished (32 Ra)			
Р5	300 PSI Helium under water / 5 minutes	General requirement	Plastic mesh protectors - assemblies sealed in plastic bag	Welds buffed ¹ fittings polished (32 Ra)			
P6	300 PSI Helium under water / 5 minutes	Oxygen cleaned per CGA G-4.1	Plastic mesh protectors - assemblies sealed in plastic bag	Welds buffed ¹ fittings polished (32 Ra)			
P7	Customer specified	Oxygen cleaned per CGA G-4.1	Plastic mesh protectors - assemblies sealed in plastic bag	Welds buffed ¹ fittings polished (32 Ra)			
P8	Helium leak test - leak rate < 1x10 ⁻⁵ cc/sec	Water flushed, hot air dried	Plastic mesh protectors - assemblies sealed in plastic bag	Welds buffed ¹ fittings polished (32 Ra)			
P9	Helium leak test - leak rate < 1x10 ⁻⁷ cc/sec	Flushed with alcohol, hot air dried	Plastic mesh protectors - assemblies sealed in plastic bag	Welds buffed ¹ fittings polished (32 Ra)			
P10	Helium leak test - leak rate < 1x10 ⁻⁹ cc/sec	Flushed with alcohol, hot air dried	Plastic mesh protectors - assemblies sealed in plastic bag	Welds buffed ¹ fittings polished (32 Ra)			
P11	Customer specified	Customer specified	Customer specified	Customer specified			

Footnotes

1. Buffing of welds will remove any heat discoloration due to welding, marker on hose, etc. All welds are argon purged.

2. With any gas under water test, the presence of bubbles would indicate failure.

Technical Informatior

Corrosion Resistance Chart

Caution: This information is offered only as a guide. Actual service life can only be determined by the end user by testing under all extreme conditions and other analysis. See Parker Safety Guide on pages 17-20.

(A) Ratings are based on ambient temperature

(B) No rating indicates no data available

Ratings: 1 – Excellent Resistance

- Notes:
- 2 Good Resistance
- 3 Fair or Conditional Resistance
- X Not Recommended

	T321	T316
Acetate Solvents (crude)	1	2
Acetate Solvents (pure)	1	1
Acetic Acid 80%	1	1
Acetic Acid 50%	2	1
Acetic Acid 20%	2	1
Acetic Acid 10%	1	1
Acetic Anhydride	2	2
Acetone	1	1
Acetylene	1	1
Alcohols		
Amyl Alcohol	2	2
Benzyl Alcohol	1	1
Butyl Alcohol	1	1
Diacetone Alcohol	2	2
Ethyl Alcohol	2	2
Hexyl Alcohol	-	-
Isobutyl Alcohol	-	-
Isopropyl Alcohol	2	2
Methyl Alcohol	2	2
Octvi Alcohol	_	_
Propyl Alcohol	1	1
Aluminum	,	,
Aluminum Chloride	X	X
Aluminum Fluofide (sat)	X	2
Aluminum Nitrate (sat.)	2	2
Aluminum Potssium Sulfate	X	2
Aluminum Sulfate (sat)	2	2
Alum	2 V	2
Ammonia	^	2
	2	1
	1	1
Ammonia Nitroto	1	1
	_	_
Ammonium Biflourido		
Ammonium Carbonata (act.)	-	-
Ammonium Carbonate (sal.)	2	2
Ammonium Casenite	-	-
Ammonium Unioride (sat.)	X	X
Ammonium Hydroxide (sat.)	2	2
Ammonium Nitrate	-	-
Ammonium Phosphate	-	-
Ammonium Sulfate (10%-40%)	X	2
Aniline	1	1
Arsenic Acid	2	2
Barium		
Barium Carbonate (sat.)	2	2
Barium Chloride	Х	2
Barium Hydroxide	2	2
Barium Sulfate	2	2
Barium Sulfide	2	2
Beer	1	1
Benzaldehyde	2	2

	T321	T316
Benzene, Benzol	2	2
Benzine	-	-
Benzoic Acid	2	2
Black Liquor	2	2
Bleach (12.5% chlorine)	-	Х
Borax	2	1
Boric Acid	-	-
Brake Fluid	1	1
Brine Acid	-	-
Bromic Acid	-	-
Bromine Liquid	Х	Х
Butadeine, Butylene	2	2
Butane	2	2
Butyl Acetate	2	2
Butyric Acid	2	2
Calcium		
Calcium Busulfate	Х	2
Calcium Bisulfide	-	-
Calcium Bisulfite	2	2
Calcium Carbonate	1	2
Calcium Chloride	-	_
Calcium Hydroxide	2	2
Calcium Hypochlorite (sat.)	X	2
Carbon		
Carbon Bisulfide	2	2
Carbon Dioxide (drv)	2	2
Carbon Dioxide (wet)	2	2
Carbon Disulfide	2	2
Carbon Monoxide	1	1
Carbon Tetrachloride	1	1
Carbonic Acid	2	2
Castor Oil	2	2
Caustic Potash	-	-
Cellosolves	2	2
Chlorine (liquid)	-	-
Chloroform	-	1
Chlorosulfonic Acid	Х	Х
Chromic Acid 50%	3	2
Citric Acid	-	-
Clorox (bleach) 5.5% CL	-	2
Coke Oven Gas	2	2
Copper		
Copper Chloride	Х	Х
Copper Cyanide	2	2
Copper Sulfate (sat.)	-	2
Creysylic Acid	2	2
Cyclohexane	2	2
Detergents	1	2
Dextrose	-	-
Diesel Fuels	1	1
Diethvlamine	2	2

	T321	T316
Disodium Phosphate	-	1
Ethers	1	1
Ethyl		
Ethyl Acetate	2	2
Ethyl Chloride	1	1
Ethylene		
Ethylene Chloride	-	-
Ethylene Dichloride	2	2
Ethylene Glycol	2	2
Ethylene Oxide	2	2
Fatty Acids	-	1
Ferric		
Ferric Chloride	Х	Х
Ferric Hydroxide	1	1
Ferric Nitrate (10%-50%)	2	2
Ferric Sulfate	-	-
Ferrous		
Ferrous Chloride (sat.)	Х	Х
Ferrous Sulfate	2	2
Fluoboric Acid	_	-
Formaldehyde (50%)	1	1
Formic Acid (Anhvd)	_	_
Freon		
Freon 11	2	2
Freon 12 (wet)	2	2
Freon 22	2	2
Fruit Juice	2	2
Euel Oils	2	2
Furfural	2	2
Gasoline		_
Befined Gasoline	2	2
Sour Gasoline	2	2
Gelatine	2	2
Glucose	2	2
Glue	2	2
Glycerine	1	1
Glycol	2	2
Green Liquor	_	-
Heptane	2	2
Hexane	1	1
Hydrobromic Acid (50%)	Х	Х
Hydrobromic Acid (20%)	х	Х
Hydrochloric Acid (20%)	X	X
Hydrochloric Acid (37%)	Х	Х
Hydrocyanic Acid	2	2
Hydrofluoric Acid	X	2
Hydrofluosilicic Acid	X	2
Hydrogen		_
Hydrogen Peroxide (50%)	2	-
Hydrogen Sulfide (Aqueous)	X	2
Hydrogen Chloride (Gas, Dry)	-	-

Technical Information

	T321	T316
Hydrogen Gas	1	1
Hypochlorous Acid	Х	Х
lodine	Х	Х
Isopropyl Ether	1	2
Jet Fuel (JP3, JP4, JP5)	2	2
Kerosene	2	2
Ketones	2	2
Lactic Acid (25%)	-	-
Lactic Acid (80%)	2	-
Lard Oil	2	2
Lead		
Lead Acetate	2	2
Lead Chloride	2	2
Lead Sulfate	2	2
Lime Sulphur	2	2
Linoleic Acid	2	2
Linseed Oil	2	2
Lubricants (0il)	2	2
Magnesium		
Magnesium Carbonate	2	2
Magnesium Chloride	-	-
Magnesium Hydroxide	1	1
Magnesium Nitrate	2	2
Magnesium Oxide	-	-
Magnesium Sulfate	2	2
Maleic Acid	2	2
Mercuric		
Mercuric Chloride	Х	-
Mercuric Cyanide	2	2
Mercury	1	1
Methane	1	1
Methanol	2	2
Methyl		
Methyl Bromide	2	2
Methyl Ethyl Ketone	2	2
Methyl Isobutyl Ketone	2	2
Methyl Methacrylate	2	2
Methylene Chloride	-	-
Milk	1	1
Mineral Uli	I	2
Muriatic Acid	X	X
Naptha	2	2
Napthalene	1	1
Nickel		
Nickel Chloride	-	-
Nickel Sulfate	2	2
Nitric Acid (100%)	-	-
Nitric Acid (50%)	1	-
Nitric Acid (30%)	1	-
	2	2
Castor Oil	2	2
	2	2
Corp Oil	2	2
Cotton Seed Oil	- 2	2
	ა ი	2
	2	2
	4	2
	1 0	2
	4	
Vegetable Ull		
	-	1
	2 V	2
Unalle Aciu (Sat.)	٨	^

	T321	T316
Oxygen	2	2
Palmitic Acid	2	2
Paraffin	2	2
Perchlorethylene	-	-
Petroletum	2	2
Phenol (Carbolic Acid)	-	1
Phosphoric Acid		
Phosphoric Acid (25%-50%)	-	-
Phosphoric Acid (50%-85%)	1	
Photographic Solutions	1	1
Phthalic Anhydride	1	1
Picric Acid	2	2
Plating Solutions	_	_
Brass Plating Solution	-	2
Cadmium Plating Solution	_	2
Chrome 40% Plating Solution		2
Copper (Cyapide) Plat Solution	_	2
Cold Disting Colution	_	-
Gold Plaung Solution	-	- 1
Iron Flaung Solution	-	-
Lead Plating Solution		
Nickel Plating Solution	1	1
Silver Plating Solution	1	1
Tin Plating Solution	Х	Х
Zinc Plating Solution	-	-
Potassium		
Potassium Acetate	-	-
Potassium Bicarbonate (30%)	1	1
Potassium Carbonate (50%)	1	1
Potassium Chlorate (30%)	2	1
Potassium Chloride (30%)	-	-
Potassium Chromate (30%)	2	2
Potassium Cvanide Sol. (30%)	2	2
Potassium Dichromate (30%)	1	1
Potassium Hydroxide (90%)	X	-
Potassium Nitrate (80%)	2	2
Potassium Permanganate (20%)	2	2
Potassium Sulfate (10%)	-	-
Propaga	2	2
Propulana Glucol	2	2
Propylene Giycol	2	2
Propylene Oxide	-	-
Pyridine	2	2
Pyrogallic Acid	2	2
Silver Nitrate	2	1
Soap Solutions	2	2
Sodium		
Sodium Acetate	2	2
Sodium Bicarbonate (20%)	1	1
Sodium Bisulfate	-	-
Sodium Bisulfite	-	-
Sodium Borate	2	2
Sodium Perborate (10%)	2	2
Sodium Carbonate	-	-
Sodium Chlorate	-	-
Sodium Chloride	-	-
Sodium Cvanide	-	-
Sodium Dichromate	2	2
Sodium Hydroxide (70%)	2	2
Sodium Hydroxida (50%)	4	2
Sourial in Tyuroxide (30%)		-
Soululli Hydroxide (30%)		
Sodium Hypochlorite	X	X
Sodium Metaphosphate	2	2
Sodium Nitrate	-	-
Sodium Perborate (10%)	2	2
Sodium Peroxide (10%)	2	2

	T321	T316
Sodium Silicate	2	2
Sodium Sulfate	-	1
Sodium Sulfide (50%)	-	2
Sodium Thiosulphate	2	2
Stannic Chloride	Х	Х
Stannous Chloride	Х	-
Steam	-	-
Stearic Acid	2	1
Stoddard Solvent	2	2
Sugar Liquors (cane)	2	2
Sugar Liquors (beet)	1	1
Sulfate Liquors	-	2
Sulfite Liquors	2	2
Sulphur Chloride	-	-
Sulphur Dioxide (dry)	-	2
Sulphur Trioxide	-	2
Sulfuric Acid (to 10%)	Х	Х
Sulfuric Acid (10%-75%)	-	-
Sulfurous Acid	Х	-
Tannic Acid	2	2
Tanning Liquors	1	1
Tartaric Acid	1	1
Titanium Tetrachloride	-	-
Toluene	1	1
Tetrahydrofuran	1	2
Tomato Juice	2	2
Trichloroethylene	-	-
Triethanolamine	2	2
Triethylamine	2	2
Trisodium Phosphate	-	-
Turpentine	1	1
Urea	-	-
Urine	1	1
Vinegar	2	2
Water Acid (mine)	-	-
Water (distilled)	2	2
Water (sea)	2	2
Whiskey	1	1
White Liquor (pulp)	2	2
Wine	1	1
Xylene	2	2
Zinc		
Zinc Chloride	Х	2
Zinc Nitrate	2	2
Zinc Sulfate (30%)	1	1

Technical Informatior

Do's & Don'ts

Length Calculations

For the following formulas: L = Live L

Т

S

Live Length of Hose (inches)

= Travel (inches)

= Hose Outside Diameter (see specification sheets)

Verify that the installed radius is less than the stated Minimum Bend Radius for the hose at the required working pressure.

